Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Inferences in Bayesian Networks (1011.0935v2)

Published 3 Nov 2010 in cs.AI and cs.NI

Abstract: Bayesian network is a complete model for the variables and their relationships, it can be used to answer probabilistic queries about them. A Bayesian network can thus be considered a mechanism for automatically applying Bayes' theorem to complex problems. In the application of Bayesian networks, most of the work is related to probabilistic inferences. Any variable updating in any node of Bayesian networks might result in the evidence propagation across the Bayesian networks. This paper sums up various inference techniques in Bayesian networks and provide guidance for the algorithm calculation in probabilistic inference in Bayesian networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jianguo Ding (13 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.