Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stable Takens' Embeddings for Linear Dynamical Systems (1010.5938v3)

Published 28 Oct 2010 in cs.SY, cs.IT, math.DS, math.IT, and math.OC

Abstract: Takens' Embedding Theorem remarkably established that concatenating M previous outputs of a dynamical system into a vector (called a delay coordinate map) can be a one-to-one mapping of a low-dimensional attractor from the system state space. However, Takens' theorem is fragile in the sense that even small imperfections can induce arbitrarily large errors in this attractor representation. We extend Takens' result to establish deterministic, explicit and non-asymptotic sufficient conditions for a delay coordinate map to form a stable embedding in the restricted case of linear dynamical systems and observation functions. Our work is inspired by the field of Compressive Sensing (CS), where results guarantee that low-dimensional signal families can be robustly reconstructed if they are stably embedded by a measurement operator. However, in contrast to typical CS results, i) our sufficient conditions are independent of the size of the ambient state space, and ii) some system and measurement pairs have fundamental limits on the conditioning of the embedding (i.e., how close it is to an isometry), meaning that further measurements beyond some point add no further significant value. We use several simple simulations to explore the conditions of the main results, including the tightness of the bounds and the convergence speed of the stable embedding. We also present an example task of estimating the attractor dimension from time-series data to highlight the value of stable embeddings over traditional Takens' embeddings.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.