Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On variables with few occurrences in conjunctive normal forms (1010.5756v3)

Published 27 Oct 2010 in cs.DM and math.CO

Abstract: We consider the question of the existence of variables with few occurrences in boolean conjunctive normal forms (clause-sets). Let mvd(F) for a clause-set F denote the minimal variable-degree, the minimum of the number of occurrences of variables. Our main result is an upper bound mvd(F) <= nM(surp(F)) <= surp(F) + 1 + log_2(surp(F)) for lean clause-sets F in dependency on the surplus surp(F). - Lean clause-sets, defined as having no non-trivial autarkies, generalise minimally unsatisfiable clause-sets. - For the surplus we have surp(F) <= delta(F) = c(F) - n(F), using the deficiency delta(F) of clause-sets, the difference between the number of clauses and the number of variables. - nM(k) is the k-th "non-Mersenne" number, skipping in the sequence of natural numbers all numbers of the form 2n - 1. We conjecture that this bound is nearly precise for minimally unsatisfiable clause-sets. As an application of the upper bound we obtain that (arbitrary!) clause-sets F with mvd(F) > nM(surp(F)) must have a non-trivial autarky (so clauses can be removed satisfiability-equivalently by an assignment satisfying some clauses and not touching the other clauses). It is open whether such an autarky can be found in polynomial time. As a future application we discuss the classification of minimally unsatisfiable clause-sets depending on the deficiency.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.