Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally identifying coloring of graphs (1010.5624v2)

Published 27 Oct 2010 in cs.DM and math.CO

Abstract: We introduce the notion of locally identifying coloring of a graph. A proper vertex-coloring c of a graph G is said to be locally identifying, if for any adjacent vertices u and v with distinct closed neighborhood, the sets of colors that appear in the closed neighborhood of u and v are distinct. Let $\chi_{lid}(G)$ be the minimum number of colors used in a locally identifying vertex-coloring of G. In this paper, we give several bounds on $\chi_{lid}$ for different families of graphs (planar graphs, some subclasses of perfect graphs, graphs with bounded maximum degree) and prove that deciding whether $\chi_{lid}(G)=3$ for a subcubic bipartite graph $G$ with large girth is an NP-complete problem.

Citations (18)

Summary

We haven't generated a summary for this paper yet.