Many Roads to Synchrony: Natural Time Scales and Their Algorithms (1010.5545v2)
Abstract: We consider two important time scales---the Markov and cryptic orders---that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the epsilon-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the epsilon-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.