Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

No dimension independent Core-Sets for Containment under Homothetics (1010.4229v2)

Published 20 Oct 2010 in cs.CG

Abstract: This paper deals with the containment problem under homothetics which has the minimal enclosing ball (MEB) problem as a prominent representative. We connect the problem to results in classic convex geometry and introduce a new series of radii, which we call core-radii. For the MEB problem, these radii have already been considered from a different point of view and sharp inequalities between them are known. In this paper sharp inequalities between core-radii for general containment under homothetics are obtained. Moreover, the presented inequalities are used to derive sharp upper bounds on the size of core-sets for containment under homothetics. In the MEB case, this yields a tight (dimension independent) bound for the size of such core-sets. In the general case, we show that there are core-sets of size linear in the dimension and that this bound stays sharp even if the container is required to be symmetric.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.