Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Energy-Efficient Multiprocessor Scheduling for Flow Time and Makespan (1010.4110v2)

Published 20 Oct 2010 in cs.DS

Abstract: We consider energy-efficient scheduling on multiprocessors, where the speed of each processor can be individually scaled, and a processor consumes power $s{\alpha}$ when running at speed $s$, for $\alpha>1$. A scheduling algorithm needs to decide at any time both processor allocations and processor speeds for a set of parallel jobs with time-varying parallelism. The objective is to minimize the sum of the total energy consumption and certain performance metric, which in this paper includes total flow time and makespan. For both objectives, we present instantaneous parallelism clairvoyant (IP-clairvoyant) algorithms that are aware of the instantaneous parallelism of the jobs at any time but not their future characteristics, such as remaining parallelism and work. For total flow time plus energy, we present an $O(1)$-competitive algorithm, which significantly improves upon the best known non-clairvoyant algorithm and is the first constant competitive result on multiprocessor speed scaling for parallel jobs. In the case of makespan plus energy, which is considered for the first time in the literature, we present an $O(\ln{1-1/\alpha}P)$-competitive algorithm, where $P$ is the total number of processors. We show that this algorithm is asymptotically optimal by providing a matching lower bound. In addition, we also study non-clairvoyant scheduling for total flow time plus energy, and present an algorithm that achieves $O(\ln P)$-competitive for jobs with arbitrary release time and $O(\ln{1/\alpha}P)$-competitive for jobs with identical release time. Finally, we prove an $\Omega(\ln{1/\alpha}P)$ lower bound on the competitive ratio of any non-clairvoyant algorithm, matching the upper bound of our algorithm for jobs with identical release time.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.