Emergent Mind

A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers

(1010.2731)
Published Oct 13, 2010 in math.ST , cs.IT , math.IT , stat.ME , and stat.TH

Abstract

High-dimensional statistical inference deals with models in which the the number of parameters p is comparable to or larger than the sample size n. Since it is usually impossible to obtain consistent procedures unless $p/n\rightarrow0$, a line of recent work has studied models with various types of low-dimensional structure, including sparse vectors, sparse and structured matrices, low-rank matrices and combinations thereof. In such settings, a general approach to estimation is to solve a regularized optimization problem, which combines a loss function measuring how well the model fits the data with some regularization function that encourages the assumed structure. This paper provides a unified framework for establishing consistency and convergence rates for such regularized M-estimators under high-dimensional scaling. We state one main theorem and show how it can be used to re-derive some existing results, and also to obtain a number of new results on consistency and convergence rates, in both $\ell_2$-error and related norms. Our analysis also identifies two key properties of loss and regularization functions, referred to as restricted strong convexity and decomposability, that ensure corresponding regularized M-estimators have fast convergence rates and which are optimal in many well-studied cases.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.