Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Taxonomy for Text Segmentation by Formal Concept Analysis (1010.2384v1)

Published 12 Oct 2010 in cs.CL

Abstract: In this paper the problems of deriving a taxonomy from a text and concept-oriented text segmentation are approached. Formal Concept Analysis (FCA) method is applied to solve both of these linguistic problems. The proposed segmentation method offers a conceptual view for text segmentation, using a context-driven clustering of sentences. The Concept-oriented Clustering Segmentation algorithm (COCS) is based on k-means linear clustering of the sentences. Experimental results obtained using COCS algorithm are presented.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.