Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotic Normality of Support Vector Machine Variants and Other Regularized Kernel Methods (1010.0535v3)

Published 4 Oct 2010 in stat.ML

Abstract: In nonparametric classification and regression problems, regularized kernel methods, in particular support vector machines, attract much attention in theoretical and in applied statistics. In an abstract sense, regularized kernel methods (simply called SVMs here) can be seen as regularized M-estimators for a parameter in a (typically infinite dimensional) reproducing kernel Hilbert space. For smooth loss functions, it is shown that the difference between the estimator, i.e.\ the empirical SVM, and the theoretical SVM is asymptotically normal with rate $\sqrt{n}$. That is, the standardized difference converges weakly to a Gaussian process in the reproducing kernel Hilbert space. As common in real applications, the choice of the regularization parameter may depend on the data. The proof is done by an application of the functional delta-method and by showing that the SVM-functional is suitably Hadamard-differentiable.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.