Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

An Embarrassingly Simple Speed-Up of Belief Propagation with Robust Potentials (1010.0012v1)

Published 30 Sep 2010 in cs.CV and cs.AI

Abstract: We present an exact method of greatly speeding up belief propagation (BP) for a wide variety of potential functions in pairwise MRFs and other graphical models. Specifically, our technique applies whenever the pairwise potentials have been {\em truncated} to a constant value for most pairs of states, as is commonly done in MRF models with robust potentials (such as stereo) that impose an upper bound on the penalty assigned to discontinuities; for each of the $M$ possible states in one node, only a smaller number $m$ of compatible states in a neighboring node are assigned milder penalties. The computational complexity of our method is $O(mM)$, compared with $O(M2)$ for standard BP, and we emphasize that the method is {\em exact}, in contrast with related techniques such as pruning; moreover, the method is very simple and easy to implement. Unlike some previous work on speeding up BP, our method applies both to sum-product and max-product BP, which makes it useful in any applications where marginal probabilities are required, such as maximum likelihood estimation. We demonstrate the technique on a stereo MRF example, confirming that the technique speeds up BP without altering the solution.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.