Deterministic Compressed Sensing Matrices from Additive Character Sequences (1010.0011v1)
Abstract: Compressed sensing is a novel technique where one can recover sparse signals from the undersampled measurements. In this correspondence, a $K \times N$ measurement matrix for compressed sensing is deterministically constructed via additive character sequences. The Weil bound is then used to show that the matrix has asymptotically optimal coherence for $N=K2$, and to present a sufficient condition on the sparsity level for unique sparse recovery. Also, the restricted isometry property (RIP) is statistically studied for the deterministic matrix. Using additive character sequences with small alphabets, the compressed sensing matrix can be efficiently implemented by linear feedback shift registers. Numerical results show that the deterministic compressed sensing matrix guarantees reliable matching pursuit recovery performance for both noiseless and noisy measurements.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.