Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving the Quality of Non-Holonomic Motion by Hybridizing C-PRM Paths (1009.4787v1)

Published 24 Sep 2010 in cs.RO

Abstract: Sampling-based motion planners are an effective means for generating collision-free motion paths. However, the quality of these motion paths, with respect to different quality measures such as path length, clearance, smoothness or energy, is often notoriously low. This problem is accentuated in the case of non-holonomic sampling-based motion planning, in which the space of feasible motion trajectories is restricted. In this study, we combine the C-PRM algorithm by Song and Amato with our recently introduced path-hybridization approach, for creating high quality non-holonomic motion paths, with combinations of several different quality measures such as path length, smoothness or clearance, as well as the number of reverse car motions. Our implementation includes a variety of code optimizations that result in nearly real-time performance, and which we believe can be extended with further optimizations to a real-time tool for the planning of high-quality car-like motion.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube