Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Text Classification using the Concept of Association Rule of Data Mining (1009.4582v1)

Published 23 Sep 2010 in cs.LG, cs.DB, and cs.IR

Abstract: As the amount of online text increases, the demand for text classification to aid the analysis and management of text is increasing. Text is cheap, but information, in the form of knowing what classes a text belongs to, is expensive. Automatic classification of text can provide this information at low cost, but the classifiers themselves must be built with expensive human effort, or trained from texts which have themselves been manually classified. In this paper we will discuss a procedure of classifying text using the concept of association rule of data mining. Association rule mining technique has been used to derive feature set from pre-classified text documents. Naive Bayes classifier is then used on derived features for final classification.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.