Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A hybrid learning algorithm for text classification (1009.4574v1)

Published 23 Sep 2010 in cs.NE, cs.IR, and cs.LG

Abstract: Text classification is the process of classifying documents into predefined categories based on their content. Existing supervised learning algorithms to automatically classify text need sufficient documents to learn accurately. This paper presents a new algorithm for text classification that requires fewer documents for training. Instead of using words, word relation i.e association rules from these words is used to derive feature set from preclassified text documents. The concept of Naive Bayes classifier is then used on derived features and finally only a single concept of Genetic Algorithm has been added for final classification. Experimental results show that the classifier build this way is more accurate than the existing text classification systems.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.