Optimization and Convergence of Observation Channels in Stochastic Control
Abstract: This paper studies the optimization of observation channels (stochastic kernels) in partially observed stochastic control problems. In particular, existence and continuity properties are investigated mostly (but not exclusively) concentrating on the single-stage case. Continuity properties of the optimal cost in channels are explored under total variation, setwise convergence, and weak convergence. Sufficient conditions for compactness of a class of channels under total variation and setwise convergence are presented and applications to quantization are explored.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.