Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Calibrated Surrogate Losses for Classification with Label-Dependent Costs (1009.2718v1)

Published 14 Sep 2010 in stat.ML

Abstract: We present surrogate regret bounds for arbitrary surrogate losses in the context of binary classification with label-dependent costs. Such bounds relate a classifier's risk, assessed with respect to a surrogate loss, to its cost-sensitive classification risk. Two approaches to surrogate regret bounds are developed. The first is a direct generalization of Bartlett et al. [2006], who focus on margin-based losses and cost-insensitive classification, while the second adopts the framework of Steinwart [2007] based on calibration functions. Nontrivial surrogate regret bounds are shown to exist precisely when the surrogate loss satisfies a "calibration" condition that is easily verified for many common losses. We apply this theory to the class of uneven margin losses, and characterize when these losses are properly calibrated. The uneven hinge, squared error, exponential, and sigmoid losses are then treated in detail.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.