Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Reinforcement Learning by Comparing Immediate Reward (1009.2566v1)

Published 14 Sep 2010 in cs.LG

Abstract: This paper introduces an approach to Reinforcement Learning Algorithm by comparing their immediate rewards using a variation of Q-Learning algorithm. Unlike the conventional Q-Learning, the proposed algorithm compares current reward with immediate reward of past move and work accordingly. Relative reward based Q-learning is an approach towards interactive learning. Q-Learning is a model free reinforcement learning method that used to learn the agents. It is observed that under normal circumstances algorithm take more episodes to reach optimal Q-value due to its normal reward or sometime negative reward. In this new form of algorithm agents select only those actions which have a higher immediate reward signal in comparison to previous one. The contribution of this article is the presentation of new Q-Learning Algorithm in order to maximize the performance of algorithm and reduce the number of episode required to reach optimal Q-value. Effectiveness of proposed algorithm is simulated in a 20 x20 Grid world deterministic environment and the result for the two forms of Q-Learning Algorithms is given.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.