Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Weighted Attribute Fusion Model for Face Recognition (1009.0623v2)

Published 3 Sep 2010 in cs.CV

Abstract: Recognizing a face based on its attributes is an easy task for a human to perform as it is a cognitive process. In recent years, Face Recognition is achieved with different kinds of facial features which were used separately or in a combined manner. Currently, Feature fusion methods and parallel methods are the facial features used and performed by integrating multiple feature sets at different levels. However, this integration and the combinational methods do not guarantee better result. Hence to achieve better results, the feature fusion model with multiple weighted facial attribute set is selected. For this feature model, face images from predefined data set has been taken from Olivetti Research Laboratory (ORL) and applied on different methods like Principal Component Analysis (PCA) based Eigen feature extraction technique, Discrete Cosine Transformation (DCT) based feature extraction technique, Histogram Based Feature Extraction technique and Simple Intensity based features. The extracted feature set obtained from these methods were compared and tested for accuracy. In this work we have developed a model which will use the above set of feature extraction techniques with different levels of weights to attain better accuracy. The results show that the selection of optimum weight for a particular feature will lead to improvement in recognition rate.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.