Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Overlapping Group Lasso (1009.0306v1)

Published 2 Sep 2010 in cs.LG

Abstract: The group Lasso is an extension of the Lasso for feature selection on (predefined) non-overlapping groups of features. The non-overlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation, where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of algorithms for the optimization. We have performed empirical evaluations using the breast cancer gene expression data set, which consists of 8,141 genes organized into (overlapping) gene sets. Experimental results demonstrate the efficiency and effectiveness of the proposed algorithm.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)