Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On graph classes with logarithmic boolean-width (1009.0216v2)

Published 1 Sep 2010 in cs.DM and cs.DS

Abstract: Boolean-width is a recently introduced graph parameter. Many problems are fixed parameter tractable when parametrized by boolean-width, for instance "Minimum Weighted Dominating Set" (MWDS) problem can be solved in $O*(2{3k})$ time given a boolean-decomposition of width $k$, hence for all graph classes where a boolean-decomposition of width $O(\log n)$ can be found in polynomial time, MWDS can be solved in polynomial time. We study graph classes having boolean-width $O(\log n)$ and problems solvable in $O*(2{O(k)})$, combining these two results to design polynomial algorithms. We show that for trapezoid graphs, circular permutation graphs, convex graphs, Dilworth-$k$ graphs, circular arc graphs and complements of $k$-degenerate graphs, boolean-decompositions of width $O(\log n)$ can be found in polynomial time. We also show that circular $k$-trapezoid graphs have boolean-width $O(\log n)$, and find such a decomposition if a circular $k$-trapezoid intersection model is given. For many of the graph classes we also prove that they contain graphs of boolean-width $\Theta(\log n)$. Further we apply the results from \cite{boolw2} to give a new polynomial time algorithm solving all vertex partitioning problems introduced by Proskurowski and Telle \cite{TP97}. This extends previous results by Kratochv\'il, Manuel and Miller \cite{KMM95} showing that a large subset of the vertex partitioning problems are polynomial solvable on interval graphs.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.