Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On generalized Frame-Stewart numbers (1009.0146v2)

Published 1 Sep 2010 in math.NT and cs.DM

Abstract: For the multi-peg Tower of Hanoi problem with $k \geqslant 4$ pegs, so far the best solution is obtained by the Stewart's algorithm based on the the following recurrence relation: $\mathrm{S}_k(n)=\min_{1 \leqslant t \leqslant n} \left{2 \cdot \mathrm{S}_k(n-t) + \mathrm{S}_{k-1}(t)\right}$, $\mathrm{S}_3(n) = 2n -- 1$. In this paper, we generalize this recurrence relation to $\mathrm{G}_k(n) = \min_{1\leqslant t\leqslant n}\left{ p_k\cdot \mathrm{G}_k(n-t) + q_k\cdot \mathrm{G}_{k-1}(t) \right}$, $\mathrm{G}_3(n) = p_3\cdot \mathrm{G}_3(n-1) + q_3$, for two sequences of arbitrary positive integers $\left(p_i\right)_{i \geqslant 3}$ and $\left(q_i\right)_{i \geqslant 3}$ and we show that the sequence of differences $\left(\mathrm{G}_k(n)- \mathrm{G}_k(n-1)\right)_{n \geqslant 1}$ consists of numbers of the form $\left(\prod_{i=3}{k}q_i\right) \cdot \left(\prod_{i=3}{k}{p_i}{\alpha_i}\right)$, with $\alpha_i\geqslant 0$ for all $i$, arranged in nondecreasing order. We also apply this result to analyze recurrence relations for the Tower of Hanoi problems on several graphs.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.