On generalized Frame-Stewart numbers (1009.0146v2)
Abstract: For the multi-peg Tower of Hanoi problem with $k \geqslant 4$ pegs, so far the best solution is obtained by the Stewart's algorithm based on the the following recurrence relation: $\mathrm{S}_k(n)=\min_{1 \leqslant t \leqslant n} \left{2 \cdot \mathrm{S}_k(n-t) + \mathrm{S}_{k-1}(t)\right}$, $\mathrm{S}_3(n) = 2n -- 1$. In this paper, we generalize this recurrence relation to $\mathrm{G}_k(n) = \min_{1\leqslant t\leqslant n}\left{ p_k\cdot \mathrm{G}_k(n-t) + q_k\cdot \mathrm{G}_{k-1}(t) \right}$, $\mathrm{G}_3(n) = p_3\cdot \mathrm{G}_3(n-1) + q_3$, for two sequences of arbitrary positive integers $\left(p_i\right)_{i \geqslant 3}$ and $\left(q_i\right)_{i \geqslant 3}$ and we show that the sequence of differences $\left(\mathrm{G}_k(n)- \mathrm{G}_k(n-1)\right)_{n \geqslant 1}$ consists of numbers of the form $\left(\prod_{i=3}{k}q_i\right) \cdot \left(\prod_{i=3}{k}{p_i}{\alpha_i}\right)$, with $\alpha_i\geqslant 0$ for all $i$, arranged in nondecreasing order. We also apply this result to analyze recurrence relations for the Tower of Hanoi problems on several graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.