Emergent Mind

On generalized Frame-Stewart numbers

(1009.0146)
Published Sep 1, 2010 in math.NT and cs.DM

Abstract

For the multi-peg Tower of Hanoi problem with $k \geqslant 4$ pegs, so far the best solution is obtained by the Stewart's algorithm based on the the following recurrence relation: $\mathrm{S}_k(n)=\min_{1 \leqslant t \leqslant n} \left{2 \cdot \mathrm{S}_k(n-t) + \mathrm{S}_{k-1}(t)\right}$, $\mathrm{S}_3(n) = 2n -- 1$. In this paper, we generalize this recurrence relation to $\mathrm{G}_k(n) = \min_{1\leqslant t\leqslant n}\left{ p_k\cdot \mathrm{G}_k(n-t) + q_k\cdot \mathrm{G}_{k-1}(t) \right}$, $\mathrm{G}_3(n) = p_3\cdot \mathrm{G}_3(n-1) + q_3$, for two sequences of arbitrary positive integers $\left(p_i\right)_{i \geqslant 3}$ and $\left(q_i\right)_{i \geqslant 3}$ and we show that the sequence of differences $\left(\mathrm{G}_k(n)- \mathrm{G}_k(n-1)\right)_{n \geqslant 1}$ consists of numbers of the form $\left(\prod_{i=3}{k}q_i\right) \cdot \left(\prod_{i=3}{k}{p_i}{\alpha_i}\right)$, with $\alpha_i\geqslant 0$ for all $i$, arranged in nondecreasing order. We also apply this result to analyze recurrence relations for the Tower of Hanoi problems on several graphs.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.