Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Solving the Inverse Protein Folding Problem (1008.4938v1)

Published 29 Aug 2010 in q-bio.QM and cs.SC

Abstract: Accurately assigning folds for divergent protein sequences is a major obstacle to structural studies and underlies the inverse protein folding problem. Herein, we outline our theories for fold-recognition in the "twilight-zone" of sequence similarity (<25% identity). Our analyses demonstrate that structural sequence profiles built using Position-Specific Scoring Matrices (PSSMs) significantly outperform multiple popular homology-modeling algorithms for relating and predicting structures given only their amino acid sequences. Importantly, structural sequence profiles reconstitute SCOP fold classifications in control and test datasets. Results from our experiments suggest that structural sequence profiles can be used to rapidly annotate protein folds at proteomic scales. We propose that encoding the entire Protein DataBank (~1070 folds) into structural sequence profiles would extract interoperable information capable of improving most if not all methods of structural modeling.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube