Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

LIFO-Backpressure Achieves Near Optimal Utility-Delay Tradeoff (1008.4895v2)

Published 29 Aug 2010 in math.OC and cs.SY

Abstract: There has been considerable recent work developing a new stochastic network utility maximization framework using Backpressure algorithms, also known as MaxWeight. A key open problem has been the development of utility-optimal algorithms that are also delay efficient. In this paper, we show that the Backpressure algorithm, when combined with the LIFO queueing discipline (called LIFO-Backpressure), is able to achieve a utility that is within $O(1/V)$ of the optimal value, while maintaining an average delay of $O([\log(V)]2)$ for all but a tiny fraction of the network traffic. This result holds for general stochastic network optimization problems and general Markovian dynamics. Remarkably, the performance of LIFO-Backpressure can be achieved by simply changing the queueing discipline; it requires no other modifications of the original Backpressure algorithm. We validate the results through empirical measurements from a sensor network testbed, which show good match between theory and practice.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.