Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A high speed unsupervised speaker retrieval using vector quantization and second-order statistics (1008.4658v2)

Published 27 Aug 2010 in cs.IR and cs.SD

Abstract: This paper describes an effective unsupervised method for query-by-example speaker retrieval. We suppose that only one speaker is in each audio file or in audio segment. The audio data are modeled using a common universal codebook. The codebook is based on bag-of-frames (BOF). The features corresponding to the audio frames are extracted from all audio files. These features are grouped into clusters using the K-means algorithm. The individual audio files are modeled by the normalized distribution of the numbers of cluster bins corresponding to this file. In the first level the k-nearest to the query files are retrieved using vector space representation. In the second level the second-order statistical measure is applied to obtained k-nearest files to find the final result of the retrieval. The described method is evaluated on the subset of Ester corpus of French broadcast news.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)