Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Comparative Study of Statistical Skin Detection Algorithms for Sub-Continental Human Images (1008.4206v1)

Published 25 Aug 2010 in cs.CV

Abstract: Object detection has been a focus of research in human-computer interaction. Skin area detection has been a key to different recognitions like face recognition, human motion detection, pornographic and nude image prediction, etc. Most of the research done in the fields of skin detection has been trained and tested on human images of African, Mongolian and Anglo-Saxon ethnic origins. Although there are several intensity invariant approaches to skin detection, the skin color of Indian sub-continentals have not been focused separately. The approach of this research is to make a comparative study between three image segmentation approaches using Indian sub-continental human images, to optimize the detection criteria, and to find some efficient parameters to detect the skin area from these images. The experiments observed that HSV color model based approach to Indian sub-continental skin detection is more suitable with considerable success rate of 91.1% true positives and 88.1% true negatives.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.