Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accuracy guarantees for L1-recovery (1008.3651v3)

Published 21 Aug 2010 in math.ST, cs.SY, math.OC, and stat.TH

Abstract: We discuss two new methods of recovery of sparse signals from noisy observation based on $\ell_1$- minimization. They are closely related to the well-known techniques such as Lasso and Dantzig Selector. However, these estimators come with efficiently verifiable guaranties of performance. By optimizing these bounds with respect to the method parameters we are able to construct the estimators which possess better statistical properties than the commonly used ones. We also show how these techniques allow to provide efficiently computable accuracy bounds for Lasso and Dantzig Selector. We link our performance estimations to the well known results of Compressive Sensing and justify our proposed approach with an oracle inequality which links the properties of the recovery algorithms and the best estimation performance when the signal support is known. We demonstrate how the estimates can be computed using the Non-Euclidean Basis Pursuit algorithm.

Citations (35)

Summary

We haven't generated a summary for this paper yet.