Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Polynomial-Time Approximation Schemes for Knapsack and Related Counting Problems using Branching Programs (1008.3187v1)

Published 18 Aug 2010 in cs.DS, cs.CC, and cs.LG

Abstract: We give a deterministic, polynomial-time algorithm for approximately counting the number of {0,1}-solutions to any instance of the knapsack problem. On an instance of length n with total weight W and accuracy parameter eps, our algorithm produces a (1 + eps)-multiplicative approximation in time poly(n,log W,1/eps). We also give algorithms with identical guarantees for general integer knapsack, the multidimensional knapsack problem (with a constant number of constraints) and for contingency tables (with a constant number of rows). Previously, only randomized approximation schemes were known for these problems due to work by Morris and Sinclair and work by Dyer. Our algorithms work by constructing small-width, read-once branching programs for approximating the underlying solution space under a carefully chosen distribution. As a byproduct of this approach, we obtain new query algorithms for learning functions of k halfspaces with respect to the uniform distribution on {0,1}n. The running time of our algorithm is polynomial in the accuracy parameter eps. Previously even for the case of k=2, only algorithms with an exponential dependence on eps were known.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.