Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Dichotomy Theorem for the Approximate Counting of Complex-Weighted Bounded-Degree Boolean CSPs (1008.2688v3)

Published 16 Aug 2010 in cs.CC

Abstract: We determine the computational complexity of approximately counting the total weight of variable assignments for every complex-weighted Boolean constraint satisfaction problem (or CSP) with any number of additional unary (i.e., arity 1) constraints, particularly, when degrees of input instances are bounded from above by a fixed constant. All degree-1 counting CSPs are obviously solvable in polynomial time. When the instance's degree is more than two, we present a dichotomy theorem that classifies all counting CSPs admitting free unary constraints into exactly two categories. This classification theorem extends, to complex-weighted problems, an earlier result on the approximation complexity of unweighted counting Boolean CSPs of bounded degree. The framework of the proof of our theorem is based on a theory of signature developed from Valiant's holographic algorithms that can efficiently solve seemingly intractable counting CSPs. Despite the use of arbitrary complex weight, our proof of the classification theorem is rather elementary and intuitive due to an extensive use of a novel notion of limited T-constructibility. For the remaining degree-2 problems, in contrast, they are as hard to approximate as Holant problems, which are a generalization of counting CSPs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)