Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Nash Equilibria in Perturbation Resilient Games (1008.1827v5)

Published 11 Aug 2010 in cs.GT and cs.DS

Abstract: Motivated by the fact that in many game-theoretic settings, the game analyzed is only an approximation to the game being played, in this work we analyze equilibrium computation for the broad and natural class of bimatrix games that are stable to perturbations. We specifically focus on games with the property that small changes in the payoff matrices do not cause the Nash equilibria of the game to fluctuate wildly. For such games we show how one can compute approximate Nash equilibria more efficiently than the general result of Lipton et al. \cite{LMM03}, by an amount that depends on the degree of stability of the game and that reduces to their bound in the worst case. Furthermore, we show that for stable games the approximate equilibria found will be close in variation distance to true equilibria, and moreover this holds even if we are given as input only a perturbation of the actual underlying stable game. For uniformly-stable games, where the equilibria fluctuate at most quasi-linearly in the extent of the perturbation, we get a particularly dramatic improvement. Here, we achieve a fully quasi-polynomial-time approximation scheme: that is, we can find $1/\poly(n)$-approximate equilibria in quasi-polynomial time. This is in marked contrast to the general class of bimatrix games for which finding such approximate equilibria is PPAD-hard. In particular, under the (widely believed) assumption that PPAD is not contained in quasi-polynomial time, our results imply that such uniformly stable games are inherently easier for computation of approximate equilibria than general bimatrix games.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube