Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Deterministic Polynomial-time Approximation Scheme for Counting Knapsack Solutions (1008.1687v1)

Published 10 Aug 2010 in cs.DS

Abstract: Given n elements with nonnegative integer weights w1,..., wn and an integer capacity C, we consider the counting version of the classic knapsack problem: find the number of distinct subsets whose weights add up to at most the given capacity. We give a deterministic algorithm that estimates the number of solutions to within relative error 1+-eps in time polynomial in n and 1/eps (fully polynomial approximation scheme). More precisely, our algorithm takes time O(n3 (1/eps) log (n/eps)). Our algorithm is based on dynamic programming. Previously, randomized polynomial time approximation schemes were known first by Morris and Sinclair via Markov chain Monte Carlo techniques, and subsequently by Dyer via dynamic programming and rejection sampling.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.