Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Codes over Matrix Rings for Space-Time Coded Modulations (1008.1387v1)

Published 8 Aug 2010 in cs.IT and math.IT

Abstract: It is known that, for transmission over quasi-static MIMO fading channels with n transmit antennas, diversity can be obtained by using an inner fully diverse space-time block code while coding gain, derived from the determinant criterion, comes from an appropriate outer code. When the inner code has a cyclic algebra structure over a number field, as for perfect space-time codes, an outer code can be designed via coset coding. More precisely, we take the quotient of the algebra by a two-sided ideal which leads to a finite alphabet for the outer code, with a cyclic algebra structure over a finite field or a finite ring. We show that the determinant criterion induces various metrics on the outer code, such as the Hamming and Bachoc distances. When n=2, partitioning the 2x2 Golden code by using an ideal above the prime 2 leads to consider codes over either M2(F_2) or M2(F_2[i]), both being non-commutative alphabets. Matrix rings of higher dimension, suitable for 3x3 and 4x4 perfect codes, give rise to more complex examples.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.