Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Spectrum of Sizes for Perfect Deletion-Correcting Codes (1008.1343v1)

Published 7 Aug 2010 in cs.IT, cs.DM, math.CO, and math.IT

Abstract: One peculiarity with deletion-correcting codes is that perfect $t$-deletion-correcting codes of the same length over the same alphabet can have different numbers of codewords, because the balls of radius $t$ with respect to the Levenshte\u{\i}n distance may be of different sizes. There is interest, therefore, in determining all possible sizes of a perfect $t$-deletion-correcting code, given the length $n$ and the alphabet size~$q$. In this paper, we determine completely the spectrum of possible sizes for perfect $q$-ary 1-deletion-correcting codes of length three for all $q$, and perfect $q$-ary 2-deletion-correcting codes of length four for almost all $q$, leaving only a small finite number of cases in doubt.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.