Spectrum of Sizes for Perfect Deletion-Correcting Codes (1008.1343v1)
Abstract: One peculiarity with deletion-correcting codes is that perfect $t$-deletion-correcting codes of the same length over the same alphabet can have different numbers of codewords, because the balls of radius $t$ with respect to the Levenshte\u{\i}n distance may be of different sizes. There is interest, therefore, in determining all possible sizes of a perfect $t$-deletion-correcting code, given the length $n$ and the alphabet size~$q$. In this paper, we determine completely the spectrum of possible sizes for perfect $q$-ary 1-deletion-correcting codes of length three for all $q$, and perfect $q$-ary 2-deletion-correcting codes of length four for almost all $q$, leaving only a small finite number of cases in doubt.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.