Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Decidable Dichotomy Theorem on Directed Graph Homomorphisms with Non-negative Weights (1008.0915v1)

Published 5 Aug 2010 in cs.CC

Abstract: The complexity of graph homomorphism problems has been the subject of intense study. It is a long standing open problem to give a (decidable) complexity dichotomy theorem for the partition function of directed graph homomorphisms. In this paper, we prove a decidable complexity dichotomy theorem for this problem and our theorem applies to all non-negative weighted form of the problem: given any fixed matrix A with non-negative algebraic entries, the partition function Z_A(G) of directed graph homomorphisms from any directed graph G is either tractable in polynomial time or #P-hard, depending on the matrix A. The proof of the dichotomy theorem is combinatorial, but involves the definition of an infinite family of graph homomorphism problems. The proof of its decidability is algebraic using properties of polynomials.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube