Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deterministic Construction of Partial Fourier Compressed Sensing Matrices Via Cyclic Difference Sets (1008.0885v2)

Published 4 Aug 2010 in cs.IT and math.IT

Abstract: Compressed sensing is a novel technique where one can recover sparse signals from the undersampled measurements. This paper studies a $K \times N$ partial Fourier measurement matrix for compressed sensing which is deterministically constructed via cyclic difference sets (CDS). Precisely, the matrix is constructed by $K$ rows of the $N\times N$ inverse discrete Fourier transform (IDFT) matrix, where each row index is from a $(N, K, \lambda)$ cyclic difference set. The restricted isometry property (RIP) is statistically studied for the deterministic matrix to guarantee the recovery of sparse signals. A computationally efficient reconstruction algorithm is then proposed from the structure of the matrix. Numerical results show that the reconstruction algorithm presents competitive recovery performance with allowable computational complexity.

Citations (12)

Summary

We haven't generated a summary for this paper yet.