Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Deterministic Construction of Partial Fourier Compressed Sensing Matrices Via Cyclic Difference Sets (1008.0885v2)

Published 4 Aug 2010 in cs.IT and math.IT

Abstract: Compressed sensing is a novel technique where one can recover sparse signals from the undersampled measurements. This paper studies a $K \times N$ partial Fourier measurement matrix for compressed sensing which is deterministically constructed via cyclic difference sets (CDS). Precisely, the matrix is constructed by $K$ rows of the $N\times N$ inverse discrete Fourier transform (IDFT) matrix, where each row index is from a $(N, K, \lambda)$ cyclic difference set. The restricted isometry property (RIP) is statistically studied for the deterministic matrix to guarantee the recovery of sparse signals. A computationally efficient reconstruction algorithm is then proposed from the structure of the matrix. Numerical results show that the reconstruction algorithm presents competitive recovery performance with allowable computational complexity.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube