Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Assessing coupling dynamics from an ensemble of time series (1008.0539v1)

Published 3 Aug 2010 in cs.IT and math.IT

Abstract: Finding interdependency relations between (possibly multivariate) time series provides valuable knowledge about the processes that generate the signals. Information theory sets a natural framework for non-parametric measures of several classes of statistical dependencies. However, a reliable estimation from information-theoretic functionals is hampered when the dependency to be assessed is brief or evolves in time. Here, we show that these limitations can be overcome when we have access to an ensemble of independent repetitions of the time series. In particular, we gear a data-efficient estimator of probability densities to make use of the full structure of trial-based measures. By doing so, we can obtain time-resolved estimates for a family of entropy combinations (including mutual information, transfer entropy, and their conditional counterparts) which are more accurate than the simple average of individual estimates over trials. We show with simulated and real data that the proposed approach allows to recover the time-resolved dynamics of the coupling between different subsystems.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube