Improved Parameterized Algorithms for Constraint Satisfaction (1008.0213v2)
Abstract: For many constraint satisfaction problems, the algorithm which chooses a random assignment achieves the best possible approximation ratio. For instance, a simple random assignment for {\sc Max-E3-Sat} allows 7/8-approximation and for every $\eps >0$ there is no polynomial-time ($7/8+\eps$)-approximation unless P=NP. Another example is the {\sc Permutation CSP} of bounded arity. Given the expected fraction $\rho$ of the constraints satisfied by a random assignment (i.e. permutation), there is no $(\rho+\eps)$-approximation algorithm for every $\eps >0$, assuming the Unique Games Conjecture (UGC). In this work, we consider the following parameterization of constraint satisfaction problems. Given a set of $m$ constraints of constant arity, can we satisfy at least $\rho m +k$ constraint, where $\rho$ is the expected fraction of constraints satisfied by a random assignment? {\sc Constraint Satisfaction Problems above Average} have been posed in different forms in the literature \cite{Niedermeier2006,MahajanRamanSikdar09}. We present a faster parameterized algorithm for deciding whether $m/2+k/2$ equations can be simultaneously satisfied over ${\mathbb F}_2$. As a consequence, we obtain $O(k)$-variable bikernels for {\sc boolean CSPs} of arity $c$ for every fixed $c$, and for {\sc permutation CSPs} of arity 3. This implies linear bikernels for many problems under the "above average" parameterization, such as {\sc Max-$c$-Sat}, {\sc Set-Splitting}, {\sc Betweenness} and {\sc Max Acyclic Subgraph}. As a result, all the parameterized problems we consider in this paper admit $2{O(k)}$-time algorithms. We also obtain non-trivial hybrid algorithms for every Max $c$-CSP: for every instance $I$, we can either approximate $I$ beyond the random assignment threshold in polynomial time, or we can find an optimal solution to $I$ in subexponential time.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.