Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric categorial grammar: residuation and Galois connections (1008.0170v1)

Published 1 Aug 2010 in cs.CL

Abstract: The Lambek-Grishin calculus is a symmetric extension of the Lambek calculus: in addition to the residuated family of product, left and right division operations of Lambek's original calculus, one also considers a family of coproduct, right and left difference operations, related to the former by an arrow-reversing duality. Communication between the two families is implemented in terms of linear distributivity principles. The aim of this paper is to complement the symmetry between (dual) residuated type-forming operations with an orthogonal opposition that contrasts residuated and Galois connected operations. Whereas the (dual) residuated operations are monotone, the Galois connected operations (and their duals) are antitone. We discuss the algebraic properties of the (dual) Galois connected operations, and generalize the (co)product distributivity principles to include the negative operations. We give a continuation-passing-style translation for the new type-forming operations, and discuss some linguistic applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Michael Moortgat (18 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.