Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Clustering Unstructured Data (Flat Files) - An Implementation in Text Mining Tool (1007.4324v1)

Published 25 Jul 2010 in cs.IR

Abstract: With the advancement of technology and reduced storage costs, individuals and organizations are tending towards the usage of electronic media for storing textual information and documents. It is time consuming for readers to retrieve relevant information from unstructured document collection. It is easier and less time consuming to find documents from a large collection when the collection is ordered or classified by group or category. The problem of finding best such grouping is still there. This paper discusses the implementation of k-Means clustering algorithm for clustering unstructured text documents that we implemented, beginning with the representation of unstructured text and reaching the resulting set of clusters. Based on the analysis of resulting clusters for a sample set of documents, we have also proposed a technique to represent documents that can further improve the clustering result.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.