Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Finding Cycles and Trees in Sublinear Time (1007.4230v3)

Published 23 Jul 2010 in cs.DS and cs.DM

Abstract: We present sublinear-time (randomized) algorithms for finding simple cycles of length at least $k\geq 3$ and tree-minors in bounded-degree graphs. The complexity of these algorithms is related to the distance of the graph from being $C_k$-minor-free (resp., free from having the corresponding tree-minor). In particular, if the graph is far (i.e., $\Omega(1)$-far) {from} being cycle-free, i.e. if one has to delete a constant fraction of edges to make it cycle-free, then the algorithm finds a cycle of polylogarithmic length in time $\tildeO(\sqrt{N})$, where $N$ denotes the number of vertices. This time complexity is optimal up to polylogarithmic factors. The foregoing results are the outcome of our study of the complexity of {\em one-sided error} property testing algorithms in the bounded-degree graphs model. For example, we show that cycle-freeness of $N$-vertex graphs can be tested with one-sided error within time complexity $\tildeO(\poly(1/\e)\cdot\sqrt{N})$. This matches the known $\Omega(\sqrt{N})$ query lower bound, and contrasts with the fact that any minor-free property admits a {\em two-sided error} tester of query complexity that only depends on the proximity parameter $\e$. For any constant $k\geq3$, we extend this result to testing whether the input graph has a simple cycle of length at least $k$. On the other hand, for any fixed tree $T$, we show that $T$-minor-freeness has a one-sided error tester of query complexity that only depends on the proximity parameter $\e$. Our algorithm for finding cycles in bounded-degree graphs extends to general graphs, where distances are measured with respect to the actual number of edges. Such an extension is not possible with respect to finding tree-minors in $o(\sqrt{N})$ complexity.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.