Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Support Vector Machines for Additive Models: Consistency and Robustness (1007.4062v1)

Published 23 Jul 2010 in stat.ML

Abstract: Support vector machines (SVMs) are special kernel based methods and belong to the most successful learning methods since more than a decade. SVMs can informally be described as a kind of regularized M-estimators for functions and have demonstrated their usefulness in many complicated real-life problems. During the last years a great part of the statistical research on SVMs has concentrated on the question how to design SVMs such that they are universally consistent and statistically robust for nonparametric classification or nonparametric regression purposes. In many applications, some qualitative prior knowledge of the distribution P or of the unknown function f to be estimated is present or the prediction function with a good interpretability is desired, such that a semiparametric model or an additive model is of interest. In this paper we mainly address the question how to design SVMs by choosing the reproducing kernel Hilbert space (RKHS) or its corresponding kernel to obtain consistent and statistically robust estimators in additive models. We give an explicit construction of kernels - and thus of their RKHSs - which leads in combination with a Lipschitz continuous loss function to consistent and statistically robust SMVs for additive models. Examples are quantile regression based on the pinball loss function, regression based on the epsilon-insensitive loss function, and classification based on the hinge loss function.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.