Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Submodular Function Maximization under Linear Packing Constraints (1007.3604v2)

Published 21 Jul 2010 in cs.DS and cs.DM

Abstract: We study the problem of maximizing a monotone submodular set function subject to linear packing constraints. An instance of this problem consists of a matrix $A \in [0,1]{m \times n}$, a vector $b \in [1,\infty)m$, and a monotone submodular set function $f: 2{[n]} \rightarrow \bbR_+$. The objective is to find a set $S$ that maximizes $f(S)$ subject to $A x_{S} \leq b$, where $x_S$ stands for the characteristic vector of the set $S$. A well-studied special case of this problem is when $f$ is linear. This special case captures the class of packing integer programs. Our main contribution is an efficient combinatorial algorithm that achieves an approximation ratio of $\Omega(1 / m{1/W})$, where $W = \min{b_i / A_{ij} : A_{ij} > 0}$ is the width of the packing constraints. This result matches the best known performance guarantee for the linear case. One immediate corollary of this result is that the algorithm under consideration achieves constant factor approximation when the number of constraints is constant or when the width of the constraints is sufficiently large. This motivates us to study the large width setting, trying to determine its exact approximability. We develop an algorithm that has an approximation ratio of $(1 - \epsilon)(1 - 1/e)$ when $W = \Omega(\ln m / \epsilon2)$. This result essentially matches the theoretical lower bound of $1 - 1/e$. We also study the special setting in which the matrix $A$ is binary and $k$-column sparse. A $k$-column sparse matrix has at most $k$ non-zero entries in each of its column. We design a fast combinatorial algorithm that achieves an approximation ratio of $\Omega(1 / (Wk{1/W}))$, that is, its performance guarantee only depends on the sparsity and width parameters.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube