Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Algorithms for the Multi-Armed Bandit Problem with Markovian Rewards (1007.2238v3)

Published 14 Jul 2010 in math.OC and cs.LG

Abstract: We consider the classical multi-armed bandit problem with Markovian rewards. When played an arm changes its state in a Markovian fashion while it remains frozen when not played. The player receives a state-dependent reward each time it plays an arm. The number of states and the state transition probabilities of an arm are unknown to the player. The player's objective is to maximize its long-term total reward by learning the best arm over time. We show that under certain conditions on the state transition probabilities of the arms, a sample mean based index policy achieves logarithmic regret uniformly over the total number of trials. The result shows that sample mean based index policies can be applied to learning problems under the rested Markovian bandit model without loss of optimality in the order. Moreover, comparision between Anantharam's index policy and UCB shows that by choosing a small exploration parameter UCB can have a smaller regret than Anantharam's index policy.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.