Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A note on interval edge-colorings of graphs (1007.1717v2)

Published 10 Jul 2010 in cs.DM

Abstract: An edge-coloring of a graph $G$ with colors $1,2,\ldots,t$ is called an interval $t$-coloring if for each $i\in {1,2,\ldots,t}$ there is at least one edge of $G$ colored by $i$, and the colors of edges incident to any vertex of $G$ are distinct and form an interval of integers. In this paper we prove that if a connected graph $G$ with $n$ vertices admits an interval $t$-coloring, then $t\leq 2n-3$. We also show that if $G$ is a connected $r$-regular graph with $n$ vertices has an interval $t$-coloring and $n\geq 2r+2$, then this upper bound can be improved to $2n-5$.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.