Submodular Maximization by Simulated Annealing (1007.1632v1)
Abstract: We consider the problem of maximizing a nonnegative (possibly non-monotone) submodular set function with or without constraints. Feige et al. [FOCS'07] showed a 2/5-approximation for the unconstrained problem and also proved that no approximation better than 1/2 is possible in the value oracle model. Constant-factor approximation was also given for submodular maximization subject to a matroid independence constraint (a factor of 0.309 Vondrak [FOCS'09]) and for submodular maximization subject to a matroid base constraint, provided that the fractional base packing number is at least 2 (a 1/4-approximation, Vondrak [FOCS'09]). In this paper, we propose a new algorithm for submodular maximization which is based on the idea of {\em simulated annealing}. We prove that this algorithm achieves improved approximation for two problems: a 0.41-approximation for unconstrained submodular maximization, and a 0.325-approximation for submodular maximization subject to a matroid independence constraint. On the hardness side, we show that in the value oracle model it is impossible to achieve a 0.478-approximation for submodular maximization subject to a matroid independence constraint, or a 0.394-approximation subject to a matroid base constraint in matroids with two disjoint bases. Even for the special case of cardinality constraint, we prove it is impossible to achieve a 0.491-approximation. (Previously it was conceivable that a 1/2-approximation exists for these problems.) It is still an open question whether a 1/2-approximation is possible for unconstrained submodular maximization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.