Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On independent sets in random graphs (1007.1378v3)

Published 8 Jul 2010 in cs.DM

Abstract: The independence number of a sparse random graph G(n,m) of average degree d=2m/n is well-known to be \alpha(G(n,m))~2n ln(d)/d with high probability. Moreover, a trivial greedy algorithm w.h.p. finds an independent set of size (1+o(1)) n ln(d)/d, i.e. half the maximum size. Yet in spite of 30 years of extensive research no efficient algorithm has emerged to produce an independent set with (1+c)n ln(d)/d, for any fixed c>0. In this paper we prove that the combinatorial structure of the independent set problem in random graphs undergoes a phase transition as the size k of the independent sets passes the point k nln(d)/d. Roughly speaking, we prove that independent sets of size k>(1+c)n ln(d)/d form an intricately ragged landscape, in which local search algorithms are bound to get stuck. We illustrate this phenomenon by providing an exponential lower bound for the Metropolis process, a Markov chain for sampling independents sets.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.