An axiomatic formalization of bounded rationality based on a utility-information equivalence (1007.0940v1)
Abstract: Classic decision-theory is based on the maximum expected utility (MEU) principle, but crucially ignores the resource costs incurred when determining optimal decisions. Here we propose an axiomatic framework for bounded decision-making that considers resource costs. Agents are formalized as probability measures over input-output streams. We postulate that any such probability measure can be assigned a corresponding conjugate utility function based on three axioms: utilities should be real-valued, additive and monotonic mappings of probabilities. We show that these axioms enforce a unique conversion law between utility and probability (and thereby, information). Moreover, we show that this relation can be characterized as a variational principle: given a utility function, its conjugate probability measure maximizes a free utility functional. Transformations of probability measures can then be formalized as a change in free utility due to the addition of new constraints expressed by a target utility function. Accordingly, one obtains a criterion to choose a probability measure that trades off the maximization of a target utility function and the cost of the deviation from a reference distribution. We show that optimal control, adaptive estimation and adaptive control problems can be solved this way in a resource-efficient way. When resource costs are ignored, the MEU principle is recovered. Our formalization might thus provide a principled approach to bounded rationality that establishes a close link to information theory.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.