Papers
Topics
Authors
Recent
2000 character limit reached

The Isomorphism Relation Between Tree-Automatic Structures (1007.0822v1)

Published 6 Jul 2010 in math.LO and cs.LO

Abstract: An $\omega$-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for $\omega$-tree-automatic structures. We prove first that the isomorphism relation for $\omega$-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is not determined by the axiomatic system ZFC. Then we prove that the isomorphism problem for $\omega$-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is neither a $\Sigma_21$-set nor a $\Pi_21$-set.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.