Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Survey Paper on Recommender Systems (1006.5278v4)

Published 28 Jun 2010 in cs.IR and cs.LG

Abstract: Recommender systems apply data mining techniques and prediction algorithms to predict users' interest on information, products and services among the tremendous amount of available items. The vast growth of information on the Internet as well as number of visitors to websites add some key challenges to recommender systems. These are: producing accurate recommendation, handling many recommendations efficiently and coping with the vast growth of number of participants in the system. Therefore, new recommender system technologies are needed that can quickly produce high quality recommendations even for huge data sets. To address these issues we have explored several collaborative filtering techniques such as the item based approach, which identify relationship between items and indirectly compute recommendations for users based on these relationships. The user based approach was also studied, it identifies relationships between users of similar tastes and computes recommendations based on these relationships. In this paper, we introduce the topic of recommender system. It provides ways to evaluate efficiency, scalability and accuracy of recommender system. The paper also analyzes different algorithms of user based and item based techniques for recommendation generation. Moreover, a simple experiment was conducted using a data mining application -Weka- to apply data mining algorithms to recommender system. We conclude by proposing our approach that might enhance the quality of recommender systems.

Citations (101)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube