Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Large scale link based latent Dirichlet allocation for web document classification (1006.4953v1)

Published 25 Jun 2010 in cs.IR

Abstract: In this paper we demonstrate the applicability of latent Dirichlet allocation (LDA) for classifying large Web document collections. One of our main results is a novel influence model that gives a fully generative model of the document content taking linkage into account. In our setup, topics propagate along links in such a way that linked documents directly influence the words in the linking document. As another main contribution we develop LDA specific boosting of Gibbs samplers resulting in a significant speedup in our experiments. The inferred LDA model can be applied for classification as dimensionality reduction similarly to latent semantic indexing. In addition, the model yields link weights that can be applied in algorithms to process the Web graph; as an example we deploy LDA link weights in stacked graphical learning. By using Weka's BayesNet classifier, in terms of the AUC of classification, we achieve 4% improvement over plain LDA with BayesNet and 18% over tf.idf with SVM. Our Gibbs sampling strategies yield about 5-10 times speedup with less than 1% decrease in accuracy in terms of likelihood and AUC of classification.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.